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Welcome to the MCI

The MCI (Managed Compiler Infrastructure) is a modern and intuitive back end
for compilers, runtimes, code analyzers, and other developer tools.

This is the infrastructure guide. It provides a high-level view of the
features, architecture, and design of the MCI. It is intended to give the
reader an overview of how the back end and virtual machine work. It is also
a good reference for writing programs to run under the MCI’s execution engines
(the JIT/AOT compilers and the interpreter) and for the various command line
tools that the MCI provides.
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1. Introduction

The MCI is a high-level, modern, and intuitive compiler back end written
in the D 2.0 programming language. It has an intermediate representation
that can easily model the concepts found in most managed languages today.
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2. Terminology

This document attempts to explain various terms and abbreviations often used
in the MCI source code and documentation.


2.1. AA

Abbreviation for alias analysis. This is the technique of proving whether or
not two pointers definitely, definitely not, or possibly point to the same
memory location.




2.2. ALU

Abbreviation for arithmetic logic unit. This refers to the unit in a processor
which performs basic arithmetic and bit-wise operations. It usually includes
operations such as addition, subtraction, multiplication, and division, but
also several bit-wise operations such as the bit-wise AND, OR, XOR, etc.




2.3. AOT

An abbreviation for ahead of time. It generally refers to either the technique
of compiling code before program execution, or such a compiler itself.




2.4. AST

An abstract tree-based representation of source code. Most parsers emit an AST
from every parsed document, as this is usually the easiest kind of data
structure to work with.




2.5. BB

Abbreviation for basic block.




2.6. Basic block

A basic block (or just block) is a set of instructions which, in SSA form,
contains a number of simple instructions terminated by a single terminator
instruction. If one were to compare with the C programming language, a basic
block can be considered a label which a goto statement can transfer
control to.




2.7. CSE

Abbreviation for common sub-expression elimination. This is an optimization
which eliminates duplicate computations in expressions. For instance, in
x * y + x * y, the computation of x + y can be factored out to a
variable z such that the expression can be rewritten as z + z, thereby
avoiding doing the computation of x + y twice.




2.8. DCE

Abbreviation for dead code elimination. This is an optimization that attempts
to remove code that is definitely unreachable or otherwise considered useless
(i.e. has no impact on the program’s semantics). For instance:

x = 0;
// ...
if (x != 0)
{
    foo();
}
else
{
    bar();
}





It is trivial to discover that the true branch will never be taken. So, we
optimize to:

x = 0;
// ...
bar();





Further optimization would remove x entirely.




2.9. EP

Abbreviation for entry point. An entry point of a main module is called
upon startup and returns the exit code of the program.




2.10. FFI

Abbreviation for foreign function interface. It can either refer to the
concept of calling a native function dynamically at runtime, or the actual
action of doing so.




2.11. GC

An abbreviation for garbage collection (or garbage collector), which refers
to the technique of using reachability analysis to determine whether memory
should be freed, instead of placing this burden upon the programmer.




2.12. GC root

A GC root is a pointer which does not lie within the heap, and is used by the
GC to start its reachability analysis from. This usually includes (but is not
necessarily limited to) global fields, local registers, the program stack etc.




2.13. Heap

Refers to the data structure the operating system uses to manage its memory.
In general, there are two heaps: The native heap and the managed heap. The
former is what is usually accessed through LibC‘s malloc() and free()
functions; the latter is the heap controlled by the GC.




2.14. IAL

Abbreviation for Intermediate Assembly Language. This is the IR used in the
core of the MCI and is a four-address, linear representation.

It is usually in a static single assignment (SSA) form while in the analysis
and optimization pipeline, but can also be in non-SSA form (for example,
when doing native code generation or when executing in the interpreter).




2.15. Insn

Abbreviation for instruction.




2.16. Instr

Abbreviation for instruction.




2.17. IPA

Inter-procedural analysis. This is the practice of doing things like alias
analysis and function inline cost analysis across function boundaries.




2.18. IPO

Inter-procedural optimization. This refers to optimizing across function
boundaries, such as when inlining functions or doing global DCE.




2.19. IR

Abbreviation for intermediate representation. Computer programs are usually
lowered to IRs to allow easier analysis and optimization for some specific
tasks, but most importantly, in order to make native code generation easier.

Most IRs are in some kind of linear form, as it is hard to generate native
code directly from a tree-based IR; linear code maps better to modern
processors.




2.20. ISA

An abbreviation for instruction set architecture. This generally refers to the
set of machine code instructions available in a processor architecture (and
sometimes other features). It may also be used to describe the instruction set
of IRs.




2.21. JIT

An abbreviation for just in time. It generally refers to either the technique
of compiling code on demand, or such a compiler itself.




2.22. LTO

Link-time optimization. This is the practice of doing IPO across modules. As
far as the MCI is concerned, this optimization comes for free, as all code
must be available in IR form.




2.23. LibC

This is the standard library for the C programming language. It is typically
exploited by many other languages, however, as it provides the easiest access
to memory, I/O, and other such facilities which are very close to the
operating system.




2.24. MCI

Abbreviation for Managed Compiler Infrastructure.




2.25. MEP

Abbreviation for module entry point. A module entry point is called once
before any of the module’s code is executed.




2.26. MXP

Abbreviation for module exit point. A module’s exit point is called once
when the program exits.




2.27. Main module

The main module of a program is the module that was passed to the virtual
machine for execution.




2.28. PRE

Abbreviation for partial redundancy elimination. This is a form of CSE that
tries to eliminate computations that are said to be partially redundant. For
instance, consider this high-level code:

if (foo)
{
    x = y - 8;
}
else
{
    // ...
}
w = y - 8;





If foo is true, y - 8 is evaluated twice. This is clearly wasteful, so
this code can be optimized to:

z = y - 8;
if (foo)
{
    x = z;
}
else
{
    // ...
}
w = z;








2.29. RTO

An abbreviation for RuntimeObject. Refers to the runtime format and layout of
values in the MCI, which generally consists of a type pointer, GC bits, and
the user data field.




2.30. RTV

An abbreviation for RuntimeValue. Refers to a rooted object that holds a
reference to a managed object.




2.31. SCCP

Abbreviation for sparse conditional constant propagation. An optimization
performed in SSA form. It is strictly more powerful than applying DCE and
constant propagation in any order or number of repetitions.




2.32. SSA

Abbreviation for static single assignment. This is a form of IR where
variables are only assigned once, and so-called phi functions are used to
determine which variable should be used depending on where control flow came
from.

SSA is mostly useful in analysis and optimization.




2.33. TEP

Abbreviation for thread entry point. A thread entry point of a module is
called before a properly registered thread executes any code within it.




2.34. TXP

Abbreviation for thread exit point. A thread exit point of a module is called
whenever a properly registered thread is exited.




2.35. TLS

Abbreviation for thread-local storage. This is a mechanism by which each
thread in a program gets its own isolated version of a variable.




2.36. Target

Refers to a processor architecture that the MCI can compile code for
(therefore, a target for code generation). Examples include x86, ARM, etc.




2.37. Terminator

A terminator is an instruction which, while code is in SSA form, indicates
the end of a basic block. Only one terminator is allowed in a
basic block, and it must appear as the last instruction.
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3. Command line tools

The MCI provides a single command line application to access all command line
tools. On most normal installations, this tool is simply called mci.

By running mci -h, you’ll get an overview of the tools and parameters that
are supported by the command line interface. This is only a short overview,
though, and doesn’t explain exactly how each tool is to be used. This page
will shed some light on that.


3.1. General syntax

As running just mci suggests, the command line interface itself has only
two options: -h|--help and -s|--silent. Generally, the short forms of
the options are preferred, so those will be used in the rest of this document.
The -h option simply displays the help overview and exits. The -s
option makes the command line interface silent, i.e. it won’t output anything
to stdout and stderr. This is mostly useful if you’re running a
program in an execution engine and don’t want the ‘noise’ that the command
line interface normally outputs.

To run a tool, you simply pass its name and arguments to mci. So, for
example, mci asm foo.ial -o bar.mci. This runs the assembler which parses
foo.ial and generates a binary bar.mci which can be executed. In order
to suppress output, you could also say mci -s asm foo.ial -o bar.mci.




3.2. Exit codes

The following primary exit codes can occur:







	Value
	Description




	0
	No errors.


	1
	A tool-specific error occurred.


	2
	Some part of command line processing failed.





Any other exit code is possible too; in particular, the execution engine tools
will return the exit code of the hosted application. The above exit codes are
just the ones that the command line interface is guaranteed to be able to
return.




3.3. Tools

This section details the usage of the specific tools the command line interface
supports. Note that all tool parameters are optional unless stated otherwise.


3.3.1. AOT compiler


	Tool name

	aot






3.3.2. IAL assembler


	Tool name

	asm



This tool assemblies IAL source files into an executable module. Other than the
parameters it takes, all arguments are assumed to be IAL source file names. All
IAL source files must end with the extension .ial.

The -o parameter specifies which file to write the resulting module to. The
output file name must end in .mci. This defaults to out.mci.

The -d parameter specifies a dump file for the parsed ASTs. This is mostly
useful for debugging, and not really for general usage.




3.3.3. Soft debugger


	Tool name

	dbg



This tool runs an interactive soft debugger client on the command line. It
allows you to connect to an execution engine with a running debugger server
and interact with the program being executed.




3.3.4. IAL disassembler


	Tool name

	disasm



Disassembles an assembled module to an IAL source file. It accepts one module
file name only (must end in .mci). In general, this can be used to
round-trip arbitrary IAL code.

The -o parameter specifies the output file. It must end in .ial. This
defaults to out.ial.




3.3.5. Graph generator


	Tool name

	graph



Generates a Graphviz control flow graph for a function. Takes as input exactly
one module file name (must end in .mci) and one function name. This tool
is mostly interesting if you are debugging internals of the MCI.

The -o parameter specifies the output file name. It must end in .dot.
This defaults to out.dot.




3.3.6. Interpreter


	Tool name

	interp



Executes a given module with the IAL interpreter. Accepts exactly one module
file name (must end in .mci). The module must have a valid entry point
function.

The -c parameter specifies which garbage collector should be used. See
mci -h for possible values.

If the hosted program is started correctly, returns whatever exit code that
program specified.




3.3.7. JIT compiler


	Tool name

	jit






3.3.8. IAL linker


	Tool name

	link



Links a set of modules into one module. Accepts a set of module file names as
input (must end in .mci). If there are function or type name clashes, the
selected resolution strategy is used to resolve them.

The -r parameter specifies which resolution strategy to use. See
mci -h for possible values.




3.3.9. Linter


	Tool name

	lint



Performs various static analyses for correctness on a set of modules. Accepts
as input a set of module file names (must end in .mci).

These analyses are generally not very smart and can easily give false
positives. They are primarily meant to help spot common errors in emitted IAL
code. Note also that this tool only analyzes SSA functions.




3.3.10. Optimizer


	Tool name

	opt



Optimizes a set of modules in place. Accepts as input a set of module file
names (must end in .mci).

The -p option specifies an optimization pass to run. See mci -h for
possible passes.

The -1 parameter applies all fast optimization passes.

The -2 parameter applies all moderate optimization passes.

The -3 parameter applies all slow optimization passes.

Fast, moderate, and slow refer to the time it takes to run the passes.

Note that none of the parameters above imply any others, so passing e.g.
-2 does not imply -1.

The -4 parameter applies all unsafe optimization passes. This allows some
unsafe optimizations to happen which might change the actual semantics of the
program. You should most likely not be using this.

Passes are applied in the exact order they are given on the command line
(duplicate passes are OK and will be run repeatedly in the given order).




3.3.11. IAL verifier


	Tool name

	verify



Verifies a set of modules for ISA and type system validity. Accepts as input a
set of module file names (must end in .mci).

Note that a module must pass these verification passes in order for it to be
executable in an execution engine.




3.3.12. Statistics


	Tool name

	stats



Outputs statistics about a set of modules to stdout. Takes as input the
file names of those modules (must end in .mci).

The -g parameter causes a list of global fields to be printed.

The -e parameter causes a list of thread fields to be printed.

The -f parameter causes a list of functions to be printed.

The -t parameter causes a list of types to be printed.

The -d parameter causes a list of data blocks to be printed.
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4. Optimization passes

This page lists the optimization passes that the MCI supports.

Fast passes are those that are considered extremely fast at executing, while
slow passes are those that take a very long time to run. Moderate passes are
somewhere in between.

Unsafe passes are those that may actually alter the semantics of a program in
order to get better performance. In general, these should not be used unless
you really know what you’re doing (a program typically has to be written
with these passes in mind in order to not break when they’re used).

Note that some optimization passes only work in SSA form, while others only
work on non-SSA form. Some passes are form-agnostic.


4.1. Fast passes


4.1.1. Nop remover


	Pass name

	nop-rem

	IR type

	Any



This pass removes all nop instructions in a function. It is mostly useful
to conserve disk and memory space if a program has many nop instructions.




4.1.2. Comment remover


	Pass name

	comm-rem

	IR type

	Any



This pass removes all comment instructions in a function. It is mostly
useful to conserve disk and memory space if a program has many comment
instructions.




4.1.3. Unused register remover


	Pass name

	unused-reg

	IR type

	Any



This is a very simple pass that simply removes all unused registers in a
function. This is completely harmless for the most part, but has the minor
side-effect that the stack layout of the function will be different once
unused registers are removed. Generally, programs should not rely on stack
layout in the first place, so it is safe to assume that this optimization is
always safe.

Running this pass after sparse conditional constant propagation and dead code
elimination is generally a good idea, since it cleans up the registers left
behind by those passes.




4.1.4. Unused basic block remover


	Pass name

	unused-bb

	IR type

	Any



This pass removes all unused basic blocks in a function. A basic block is
considered unused if no branching instruction in the function targets it and
the basic block isn’t set as the unwind block of any other basic blocks (if
the basic block has itself set as unwind block, it is considered unused).

Running this pass after sparse conditional constant propagation is generally a
good idea, since it cleans up the basic blocks left behind by that pass, which
can significantly reduce code size.




4.1.5. Constant folder


	Pass name

	const-fold

	IR type

	SSA



This pass performs simple constant folding. This includes all binary operators
(like add, subtract, multiply, divide, and so on) except comparison operators.
In general, the pass only concerns itself with integers with a fixed size and
floating-point values. It doesn’t attempt to optimize operations on native
integers. Note also that the pass stops folding if it encounters a division by
zero, since this usually means that a hardware trap must be generated at
runtime, rather than silently ignoring it at compile time.

This pass should in most cases be applied before any other passes.




4.1.6. Dead code eliminator


	Pass name

	dce

	IR type

	SSA



This is an agressive dead code elimination pass. It assumes that all of a
function’s instructions are dead until proven otherwise.

Specifically, it starts out with a list of all ‘root’ instructions. These are
the instructions known to be live unconditionally. The pass currently assumes,
conservatively, that all instructions without a target register are live.
Further, instructions with target registers that have side-effects (such as
pinning a reference, allocating memory, and so on) are considered live. All
terminator instructions are considered live as well. This list of root
instructions is then used to propagate liveness backwards such that all of the
instructions that the root instructions depend on are also considered live.
Finally, the instructions that are not live are removed.

It’s a good idea to run this after sparse conditional constant propagation to
clean up dead definitions.






4.2. Moderate passes




4.3. Slow passes




4.4. Unsafe passes
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5. Assembly language

Programs for the MCI can be written in the built-in assembly language, IAL
(Intermediate Assembly Language). The assembler takes as input a series of
source files and assembles them to a single output file (a module).

The grammar is:


Program ::=  { TypeDeclaration | GlobalFieldDeclaration | ThreadFieldDeclaration | FunctionDeclaration | DataBlockDeclaration | EntryPointDeclaration | ThreadEntryPointDeclaration | ThreadExitPointDeclaration | ModuleEntryPointDeclaration | ModuleExitPointDeclaration }


Module references have the grammar:


Module ::=  Identifier


Some common grammar elements that will be used:


DecimalDigit              ::=  "0" .. "9"
DecimalSequence           ::=  DecimalDigit { DecimalDigit }
HexadecimalDigit          ::=  DecimalDigit | "a" .. "f" | "A" .. "F"
HexadecimalSequence       ::=  HexadecimalDigit { HexadecimalDigit }
IdentifierCharacter       ::=  "." | "_" | 'a' .. 'z' | 'A' .. 'Z'
Identifier                ::=  IdentifierCharacter { IdentifierCharacter | DecimalDigit } | QuotedIdentifier
QuotedIdentifierCharacter ::=  ? any character ? - "'" | "\'"
QuotedIdentifier          ::=  "'" QuotedIdentifierCharacter { QuotedIdentifierCharacter } "'"
Literal                   ::=  [ "+" | "-" ] ( IntegerLiteral | FloatingPointLiteral | "nan" | "inf" )
LiteralArray              ::=  Literal { "," Literal }
IntegerLiteral            ::=  DecimalSequence | "0x" HexadecimalSequence
FloatingPointLiteral      ::=  DecimalSequence "." DecimalSequence [ "e" [ "+" | "-" ] DecimalSequence ]


Line comments are allowed anywhere. They start with // and go until the
end of the line, e.g.:

// This is a comment.
x = ari.add y, z; // Another comment.






5.1. Types

Structure types are aggregates of members. They can be used to form objects of
strongly typed data, and can be allocated on the stack, the native heap, and
on the GC-managed heap.

Type declarations have the grammar:


TypeDeclaration    ::=  [ MetadataList ] "type" Identifier [ AlignSpecification ] "{" { FieldDeclaration } "}"
AlignSpecification ::=  "align" Literal


The alignment specification can be used to override the automatic alignment
algorithm that the MCI uses.

Type references have the grammar:


Type ::=  [ Module "/" ] Identifier


The module reference is optional. If it is not specified, the type is looked
up in the module being assembled.

The grammar for type specifications is:


ReturnType          ::=  "void" | TypeSpecification
TypeSpecification   ::=  CoreType | Type | PointerType | ReferenceType | ArrayType | VectorType | StaticArrayType | FunctionPointerType
PointerType         ::=  TypeSpecification "*"
ReferenceType       ::=  TypeSpecification "&"
ArrayType           ::=  TypeSpecification "[" "]"
VectorType          ::=  TypeSpecification "[" Literal "]"
StaticArrayType     ::=  TypeSpecification "{" Literal "}"
FunctionPointerType ::=  ReturnType "(" TypeParameterList ")" [ CallingConvention ]
TypeParameterList   ::=  "(" [ TypeSpecification { "," TypeSpecification } ] ")"
CoreType            ::=  "int" | "uint" | "int8" | "uint8" | "int16" | "uint16" | "int32 | "uint32" | "int64" | "uint64" | "float32" | "float64"



5.1.1. Members

A member consists of a type and a name. Members are variables that represent
the physical contents of structure types.

Member declarations have the grammar:


MemberDeclaration ::=  [ MetadataList ] "field" TypeSpecification Identifier ";"


Member references have the grammar:


Member ::=  Type ":" Identifier







5.2. Fields

Fields that go into global or thread-local storage have the grammar:


GlobalFieldDeclaration    ::=  "field" "global" TypeSpecification Identifier ForeignFieldSpecification ";"
ThreadFieldDeclaration    ::=  "field" "thread" TypeSpecification Identifier ForeignFieldSpecification ";"
ForeignFieldSpecification ::=  [ "(" ForeignSymbol ")" ]


Global fields are like global variables in C: They are shared across all
threads in a process. Thread-local variables, on the other hand, get a unique
instance per thread.

If a foreign field specification is given, the field is effectively a forward
declaration for a field in another MCI module. It will be resolved and bound
the first time it is used at runtime.

Field references have the grammar:


GlobalField ::=  [ Module "/" ] Identifier
ThreadField ::=  [ Module "/" ] Identifier





5.3. Functions

Functions are the MCI’s answer to the procedure abstraction. A function takes
a number of parameters as input and returns a single output value.

Function declarations have the grammar:


FunctionDeclaration ::=  [ MetadataList ] "function" FunctionAttributes ReturnType Identifier ParameterList [ CallingConvention ] "{" FunctionBody "}"
FunctionAttributes  ::=  [ "ssa" ] [ "pure" ] [ "nooptimize" ] [ "noinline" ] [ "noreturn" ] [ "nothrow" ]
CallingConvention   ::=  "cdecl" | "stdcall"
FunctionBody        ::=  { RegisterDeclaration | BasicBlockDeclaration }


The ssa attribute specifies that the function is in SSA form. When a
function is in SSA form, registers may only be assigned exactly once (i.e.
using a register without assigning it is illegal), and must have an incoming
definition before being used. The copy instruction is not allowed in SSA
form. If a function is not in SSA form, the phi instruction is not
allowed.

The pure attribute indicates that calls to the function can safely be
reordered as the optimizer and code generator see fit. In other words, the
function is referentially transparent: Calling it with the same arguments at
any point in time will always yield the same result. This attribute should be
used carefully, as incorrect use can result in wrong code generation.

The nooptimize flag indicates that a function must not be optimized. It
will be ignored entirely by the optimization pipeline.

The noinline flag prevents a function from being inlined at call sites.

The noreturn flag indicates that a function does not return normally (e.g.
by using return or leave). The optimization and code generation
pipeline will assume that any code following a call to a noreturn function
is effectively dead. Functions marked with noreturn are still allowed to
throw exceptions, unless also marked nothrow.

The nothrow flag indicates that a function does not throw any exceptions.
This property is transitive in the sense that all functions called by a
nothrow function are also assumed to be nothrow. If a nothrow
function does throw, behavior is undefined.

Function references have the grammar:


Function ::=  [ Module "/" ] Identifier


The module reference is optional. If it is not specified, the function is
looked up in the module being assembled.


5.3.1. Parameters

Parameters have the grammar:


ParameterList ::=  "(" [ [ MetadataList ] Parameter { "," [ MetadataList ] Parameter } ] ")"


The noescape attribute only has significance for pointers, references,
arrays, vectors, and function pointers. It indicates that the function will
not escape an alias (i.e. pointer) to the pointed-to object. This means that
the parameter is guaranteed to only reside in the current stack frame, or
within objects that satisfy this same constraint.




5.3.2. Registers

A register consists of a type and a name. A function can have an arbitrary
amount of registers. If a function is in SSA form, a register can only be
assigned once, and is required to be assigned explicitly before use.

Registers are guaranteed to be completely zeroed out upon function entry.

Register declarations have the grammar:


RegisterDeclaration ::=  [ MetadataList ] "register" TypeSpecification Identifier ";"


The grammar for a register reference is:


Register ::=  Identifier





5.3.3. Basic blocks

A basic block is a linear sequence of instructions, containing exactly one
terminator instruction at the end. This terminator instruction can branch to
other basic blocks, return from the function, etc.

Basic block declarations have the grammar:


BasicBlockDeclaration ::=  [ MetadataList ] "block" ( "entry" | Identifier ) [ UnwindSpecification ] "{" Instruction { Instruction } "}"
UnwindSpecification   ::=  "unwind" BasicBlock


The unwind specification is a basic block reference and specifies where to
unwind to if an exception is thrown within the basic block.

The grammar for a basic block reference is:


BasicBlock ::=  "entry" | Identifier



5.3.3.1. Instructions

Instructions encode the actual logic of a program. They’re contained linearly
in basic blocks.

Their grammar is:


Instruction           ::=  [ MetadataList ] InstructionAttributes [ Register "=" ] ? any instruction ? [ Register [ "," Register [ "," Register ] ] ] [ InstructionOperand ] ";"
InstructionAttributes ::=  [ "volatile" ]
InstructionOperand    ::=  "(" ( Literal | LiteralArray | BasicBlock | BranchTarget | ForeignSymbol | TypeSpecification | Member | GlobalField | ThreadField | Function | DataBlock ) ")"
BranchTarget          ::=  BasicBlock "," BasicBlock
RegisterSelector      ::=  Register { "," Register }
ForeignSymbol         ::=  Identifier "," Identifier


The full list of valid instructions (with register counts, operand types, and
so on) can be found on the instruction set page. Note that the parser is
driven by that information; for example, if an instruction requires a field
reference as operand, the parser will expect to be able to parse one.

The volatile attribute ensures that an instruction is not reordered (by
the optimization pipeline and code generator) relative to other volatile
instructions. Further, instructions that seem dead (a store followed by a
store to the exact same location, for example) will not be optimized out. This
is useful to model the semantics of the volatile qualifier in the C family
of languages. Note that it has nothing to do with concurrency.

Some attributes only have meaning for certain instructions. For example, the
volatile attribute has no meaning for instructions that don’t involve
memory accesses. Meaningless attributes are allowed on instructions but
optimizers are free to remove them. The linter will also warn about them.








5.4. Data blocks

Data blocks are blobs of arbitrary data:


DataBlockDeclaration ::=  "data" Identifier "(" LiteralArray ")" ";"


Data blocks consist of a series of unsigned 8-bit bytes. They can contain any
data at all. They hold no particular meaning as far as the MCI is concerned.

Data block references have the grammar:


DataBlock ::=  [ Module "/" ] Identifier





5.5. Entry points

An entry point can be specified for a module. If this is done, the module
effectively becomes executable as a program.

The grammar is:


EntryPointDeclaration ::=  "entry" Function ";"


An entry point function must return int32, have no parameters, and have
standard calling convention.

A module entry point can be specified. It will be called before any code
inside the module is executed at all and/or any loads, stores, and address-of
operations on static/TLS fields in the module.

The grammar is:


ModuleEntryPointDeclaration ::=  "module" "entry" Function ";"


A module exit point can also be specified. It will be called once a program
has returned from its main entry point.

The grammar is:


ModuleExitPointDeclaration ::=  "module" "exit" Function ";"


Module entry and exit points must have no parameters, return void, and
have standard calling convention.

Module entry and exit points will only be called once during a program’s
execution time. A module’s module exit point is only guaranteed to be called
if that module’s module entry point was ever called during execution time.

Module entry points are guaranteed to be called before any thread entry
points. Module exit points are guaranteed to be called after any thread exit
points.

A thread entry point can also be specified. Such an entry point is guaranteed
to run before a properly registered thread gets a chance to execute any other
managed code inside the module. This is useful for initializing TLS data.

The grammar is:


ThreadEntryPointDeclaration ::=  "thread" "entry" Function ";"


A thread entry point function must return void, have no parameters, and
have standard calling convention.

Note that thread entry points may be invoked concurrently if multiple threads
enter the virtual machine at the same time. The same holds true for thread
exit points when threads exit.

Thread exit points are also available to help tear down TLS data. They are
guaranteed to be called just before a thread exits, and will only be called
once the thread has stopped executing any other managed code.

The grammar is:


ThreadExitPointDeclaration ::=  "thread" "exit" Function ";"


As with thread entry points, these must return void, have no parameters,
and have standard calling convention.

A module’s thread exit point is only guaranteed to be called if that module’s
thread entry point has been called.

A module can only have one entry point, one thread entry point, one thread
exit point, one module entry point, and one module exit point (all are
optional). They must refer to functions inside the module.

Normally, thread entry and exit points and module entry and exit points will
only be called whenever some thread attempts to access code (or fields) inside
the module they belong to. Some execution engines may, however, choose to load
all of a program’s modules eagerly, resulting in these entry and exit points
being executed even if no code inside their module was executed during the
program’s execution time.

Code inside thread entry and exit points and module entry and exit points must
not make any assumptions about the order they are called in. The order will
for all practical purposes be deterministic, but this is by no means
guaranteed.




5.6. Metadata

Metadata can be attached to type declarations, field declarations, function
declarations, register declarations, basic block declarations, and
instructions.

The grammar is:


MetadataList ::=  "[" MetadataPair { "," MetadataPair } "]"
MetadataPair ::=  Identifier ":" Identifier


Metadata is mostly useful to the optimizer and compiler pipeline.
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6. Type system

The MCI usus a mostly strong, nominal type system. The type system consists of
the following categories of types:


	Primitive types: Integer and floating-point types (int32, int64,
float32, float64, etc).

	Structure types: Similar to structs in C.

	Type specifications: These are said to have one or more “element types”.
	Pointer types: Ye olde int32* and so on.

	Reference types: Similar to pointers, but can only refer to structure
types, and may only have one indirection (for example, Foo&).

	Array types: Simple one-dimensional arrays with a dynamic length (for
example, float64[]).

	Vector types: Similar to arrays, but they have a fixed, static length
(i.e. float64[3]).

	Static array types: Similar to vectors, but live ‘in place’ where they
are used (i.e. in a structure or a register). For example, int{3}.

	Function pointer types: These point to a function which can be invoked
indirectly. They contain a calling convention, return type and parameter
types (for example, int32(float32, float64) would be a pointer to a
function taking a float32 and a float64 argument, returning
int32).







The following notation is used:







	Notation
	Meaning




	T
	Type name.


	T[]
	Array of T.


	T[E]
	Vector of T with E elements.


	T{E}
	Static array of T with E elements.


	T*
	Pointer to T.


	T&
	Reference to T.


	R(T1, ...)
	Function pointer returning R, taking T1, ... arguments.


	R(T1, ...) cdecl
	Function pointer with cdecl calling convention.






6.1. Primitive types

These are the building blocks of any application; they are the most basic
data types and represent integers and floating-point values. The following
primitive types exist:


	int8: 8-bit signed integer.

	uint8: 8-bit unsigned integer.

	int16: 16-bit signed integer.

	uint16: 16-bit unsigned integer.

	int32: 32-bit signed integer.

	uint32: 32-bit unsigned integer.

	int64: 64-bit signed integer.

	uint64: 64-bit unsigned integer.

	int: Native-size signed integer (32-bit or 64-bit).

	uint: Native-size unsigned integer (32-bit or 64-bit).

	float32: 32-bit IEEE 754 floating-point value.

	float64: 64-bit IEEE 754 floating-point value.



The fixed-width integers and floating-point types are guaranteed to be the
same size on all platforms. int and uint will be 32 or 64 bits wide
depending on the pointer length of the platform.

All primitives are convertible to/from each other.




6.2. Structure types

A structure is a record that encapsulates a fixed number of fields, each of
their own type. A field consists of a type and a name.

Examples:

// A structure with two instance fields. These can be accessed on any
// instance of Foo, both as a value instance or as a pointer with one
// indirection.
type Foo
{
    field int32 bar;
    field float64 baz;
}





A structure can also specify its alignment (this is normally decided by the
compiler). The alignment must either be zero or a power of two. If it is
zero, the compiler picks the alignment (that is to say, zero is like the
default). Examples:

// Use automatic alignment.
type Foo3 align 0
{
}

// Align fields sequentially.
type Foo4 align 1
{
}

// Align fields on a boundary of 16 bytes.
type Foo5 align 16
{
}





Structures can be created in several ways:


	On the stack as a value: Simply declare a register typed as the structure.
This makes it live on the stack with value semantics, and it will not
participate in any kind of dynamic memory allocation.

	On the stack, dynamically allocated: Declare a register as a pointer to
the structure and allocate the memory with mem.salloc or mem.snew.

	On the heap, dynamically allocated: Declare a register as either a pointer
to the structure, or as a vector or array of the structure. Then, allocate
memory with mem.alloc or mem.new.

	On the heap, GC-tracked: Declare a register as a reference to the structure
and allocate an instance with mem.new. Additionally, references can
be contained in vectors and arrays, and in other GC-tracked structures.






6.3. Type specifications

Type specifications are types that contain or encapsulate other types, such
as pointers, arrays, vectors, etc.


6.3.1. Pointer types

A pointer is, semantically, just a native-size integer pointing to some
location in memory where the real value is. A pointer can point to any
other type (including pointers, resulting in several indirections).

Examples:


	Pointer to int32: int32*

	Pointer to array of float32: float32[]*

	Pointer to pointer to uint: uint**



Pointers are convertible to any other pointer type (including function
pointers) and the primitives int and uint.




6.3.2. Reference types

References are similar to pointers, but are tracked by the GC (vectors
and arrays are also references, but this is implicit).

It is important to note that a reference value must be aligned on a native
word-size boundary. For example, this is problematic:

type BadAlign align 1
{
    field uint8 a;

    // This field will now be unaligned. This is undefined behavior.
    field BadAlign& b;
}





Care should be taken when using an explicit alignment specification on
structures that contain references. The MCI’s garbage collector, optimizer,
and code generator all assume that reference fields are aligned.

In addition to this rule, the object that the reference points to must be on
a native word-size boundary as well. This is less important to users, as the
mem.new instruction guarantees this.

Structures instantiated on the GC heap are prefixed by a header (which is
implementation-defined) containing type information, GC bits, and so on. This
header also has a dedicated native word-sized field that can be accessed with
field.user.addr. This field is primarily there to let compilers assign
language-specific type information to objects.

Examples of references:


	Reference to a structure called Foo: Foo&



Any reference-to-reference conversion is valid, including reference-to-array
and reference-to-vector conversions.




6.3.3. Array types

These are single-dimensional, length-aware collections of elements. The
exact start and end of an array in memory is undefined, but all elements
are guaranteed to be laid out contiguously. In other words, an array can
be iterated by fetching the address of the first element and incrementing
the pointer.

The elements of an array are guaranteed to start at a boundary suitable for
SIMD operations on the machine. This typically means on an 8-byte, 16-byte, or
32-byte boundary, depending on the architecture (and the target machine’s
detected features). The exact alignment should, for all practical purposes, be
considered undefined, however.

Reading beyond the bounds of an array results in undefined behavior.

Arrays can only be allocated as GC-tracked objects.

Examples:


	Array of int32: int32[]

	Array of pointers to float64: float64*[]

	Array of arrays of int8: int8[][]



Any array-to-array/vector conversion is valid as long as the source array’s
element type is convertible to the target array/vector’s element type.




6.3.4. Vector types

Vectors are similar to arrays in that they contain a series of contiguous
elements. Vectors, however, have a fixed, static length. This makes them
very easy to use with vectorization technology such as SIMD, as the JIT
compiler can unroll the SIMD operations statically.

Reading beyond the bounds of a vector results in undefined behavior.

Vectors can only be allocated as GC-tracked objects.

Examples:


	Vector of int32 with 3 elements: int32[3]

	Vector of pointers to int32 with 64 elements: int32*[64]

	Vector of 3 vectors of int32 with 8 elements: int32[8][3]



Any vector-to-vector/array conversion is valid as long as the source vector’s
element type is convertible to the target vector/array’s element type.




6.3.5. Static array types

Static arrays are similar to vectors with the difference that they are stored
‘in place’. That is, if a field in a structure is typed to be a static array,
that array’s elements will be embedded directly in the structure. A register
typed to be a static array will also result in the the entire array being on
the stack.

Static arrays are, like arrays and vectors, guaranteed to be suitably aligned
for SIMD operations on the machine.

Static arrays are passed by value. This is unlike the C calling convention
where they are passed by reference. The same behavior can be achieved by
simply passing pointers to static arrays.

Examples:


	Static array of int32 with 3 elements: int32{3}

	Static array of pointers to int32 with 64 elements: int32*{64}

	Static array of 3 static arrays of int32 with 8 elements: int32{8}{3}



Static arrays cannot be converted to any other type.




6.3.6. Function pointer types

These are simply pointers to functions in memory. A function pointer
carries information about the calling convention, return type, and
parameter types. Calling convention is optional; if it is not specified,
the default IAL calling convention is assumed.

Equality between function pointers pointing to the same function is
guaranteed if the function pointers are loaded using load.func. All
other guarantees are up to the operating system the code is running on.

Examples:


	Function returning int32, taking no parameters: int32()

	Function returning void (i.e. nothing), taking float32:
void(float32)

	Function returning void, taking float32 and int32:
void(float32, int32)

	Function returning void, taking no parameters, with cdecl calling
convention: void() cdecl



Function pointers are convertible to any pointer type (including other
function pointer types).
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7. Instruction set

This page describes the instruction set used in the IAL ISA.


7.1. Utility instructions

These instructions serve no particular purpose as far as execution goes,
but are useful for annotating the instruction stream.


7.1.1. nop


	Has target register

	No

	Source registers

	0

	Operand type

	None



Performs no actual operation. This can be useful to mark regions of code
that will be patched later in the compilation process.




7.1.2. comment


	Has target register

	No

	Source registers

	0

	Operand type

	8-bit unsigned integer array



Similar to nop, but allows attaching arbitrary data to it. Note that when the
MCI displays the data, it assumes it to be encoded as UTF-8 text.






7.2. Constant load instructions

These instructions load constant values into registers.


7.2.1. load.i8


	Has target register

	Yes

	Source registers

	0

	Operand type

	8-bit signed integer



Loads a constant 8-bit signed integer into the target register.

The target register must be of type int8.




7.2.2. load.ui8


	Has target register

	Yes

	Source registers

	0

	Operand type

	8-bit unsigned integer



Loads a constant 8-bit unsigned integer into the target register.

The target register must be of type uint8.




7.2.3. load.i16


	Has target register

	Yes

	Source registers

	0

	Operand type

	16-bit signed integer



Loads a constant 16-bit signed integer into the target register.

The target register must be of type int16.




7.2.4. load.ui16


	Has target register

	Yes

	Source registers

	0

	Operand type

	16-bit unsigned integer



Loads a constant 16-bit unsigned integer into the target register.

The target register must be of type uint16.




7.2.5. load.i32


	Has target register

	Yes

	Source registers

	0

	Operand type

	32-bit signed integer



Loads a constant 32-bit signed integer into the target register.

The target register must be of type int32.




7.2.6. load.ui32


	Has target register

	Yes

	Source registers

	0

	Operand type

	32-bit unsigned integer



Loads a constant 32-bit unsigned integer into the target register.

The target register must be of type uint32.




7.2.7. load.i64


	Has target register

	Yes

	Source registers

	0

	Operand type

	64-bit signed integer



Loads a constant 64-bit signed integer into the target register.

The target register must be of type int64.




7.2.8. load.ui64


	Has target register

	Yes

	Source registers

	0

	Operand type

	64-bit unsigned integer



Loads a constant 64-bit unsigned integer into the target register.

The target register must be of type uint64.




7.2.9. load.f32


	Has target register

	Yes

	Source registers

	0

	Operand type

	32-bit floating-point value



Loads a constant 32-bit floating-point value into the target register.

The target register must be of type float32.




7.2.10. load.f64


	Has target register

	Yes

	Source registers

	0

	Operand type

	64-bit floating-point value



Loads a constant 64-bit floating-point value into the target register.

The target register must be of type float64.




7.2.11. load.i8a


	Has target register

	Yes

	Source registers

	0

	Operand type

	8-bit signed integer array



Loads a constant array of 8-bit signed integers into the target register.

The target register must be of type int8[], int8*, or a vector or
static array of int8 with an element count matching that of the array
operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.12. load.ui8a


	Has target register

	Yes

	Source registers

	0

	Operand type

	8-bit unsigned integer array



Loads a constant array of 8-bit unsigned integers into the target register.

The target register must be of type uint8[], uint8*, or a vector or
static array of uint8 with an element count matching that of the array
operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.13. load.i16a


	Has target register

	Yes

	Source registers

	0

	Operand type

	16-bit signed integer array



Loads a constant array of 16-bit signed integers into the target register.

The target register must be of type int16[], int16*, or a vector or
static array of int16 with an element count matching that of the array
operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.14. load.ui16a


	Has target register

	Yes

	Source registers

	0

	Operand type

	16-bit unsigned integer array



Loads a constant array of 16-bit unsigned integers into the target register.

The target register must be of type uint16[], uint16*, or a vector or
static array of uint16 with an element count matching that of the array
operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.15. load.i32a


	Has target register

	Yes

	Source registers

	0

	Operand type

	32-bit signed integer array



Loads a constant array of 32-bit signed integers into the target register.

The target register must be of type int32[], int32*, or a vector or
static array of int32 with an element count matching that of the array
operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.16. load.ui32a


	Has target register

	Yes

	Source registers

	0

	Operand type

	32-bit unsigned integer array



Loads a constant array of 32-bit unsigned integers into the target register.

The target register must be of type uint32[], uint32*, or a vector or
static array of uint32 with an element count matching that of the array
operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.17. load.i64a


	Has target register

	Yes

	Source registers

	0

	Operand type

	64-bit signed integer array



Loads a constant array of 64-bit signed integers into the target register.

The target register must be of type int64[], int64*, or a vector or
static array of int64 with an element count matching that of the array
operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.18. load.ui64a


	Has target register

	Yes

	Source registers

	0

	Operand type

	64-bit unsigned integer array



Loads a constant array of 64-bit unsigned integers into the target register.

The target register must be of type uint64[], uint64*, or a vector or
static array of uint64 with an element count matching that of the array
operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.19. load.f32a


	Has target register

	Yes

	Source registers

	0

	Operand type

	32-bit floating-point value array



Loads a constant array of 32-bit floating-point values into the target
register.

The target register must be of type float32[], float32*, or a vector
or static array of float32 with an element count matching that of the
array operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.20. load.f64a


	Has target register

	Yes

	Source registers

	0

	Operand type

	64-bit floating-point value array



Loads a constant array of 64-bit floating-point values into the target
register.

The target register must be of type float64[], float64*, or a vector
or static array of float64 with an element count matching that of the
array operand.

When the target register is a pointer, the data must be explicitly freed with
mem.free. If the given array is of zero length, a null pointer is assigned
to the target register.




7.2.21. load.func


	Has target register

	Yes

	Source registers

	0

	Operand type

	Function reference



Loads a function pointer to the given function into the target register.

The target register must be of a function pointer type with a signature that
matches the function reference. For example, a function declared as:

function int32 foo(float32, float64)
{
    ...
}





can be assigned to a register declared as:

register int32(float32, float64) bar;





The target may also have a specified calling convention (cdecl or
stdcall), in which case the given function must have a matching calling
convention.

Equality for function pointers obtained through this instruction is
guaranteed. That is, if a function pointer to a specific function is loaded
twice, the two pointers are guaranteed to be equal. Ordering is, however, not
guaranteed.




7.2.22. load.null


	Has target register

	Yes

	Source registers

	0

	Operand type

	None



Loads a null value into the target register.

The target register must be a pointer, a function pointer, an array, a
vector, or a reference.




7.2.23. load.size


	Has target register

	Yes

	Source registers

	0

	Operand type

	Type specification



Loads the absolute size of a type specification’s layout in memory into the
target register.

Note that for vectors, this is not the full size of the vector, but rather
the size of the reference to the vector (as with arrays and pointers). For
static arrays, this is the full size of the entire array.

The target register must be of type uint.




7.2.24. load.align


	Has target register

	Yes

	Source registers

	0

	Operand type

	Type specification



Loads the alignment of a type specification into the target register.

The target register must be of type uint.




7.2.25. load.offset


	Has target register

	Yes

	Source registers

	0

	Operand type

	Member reference



Loads the offset of a field in its containing structure type into the
target register.

The target register must be of type uint.


7.2.25.1. load.data


	Has target register

	Yes

	Source registers

	0

	Operand type

	Data block reference



Loads a pointer to a data block into the target register. The pointer should
never be explicitly freed and is always valid.

The target register must be of type uint8*.








7.3. Arithmetic and logic instructions

These instructions provide the basic ALU.


7.3.1. ari.add


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Adds the value in the first source register to the value in the second
source register and stores the result in the target register.

This instruction can have one of two forms:


	All three registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, and float64.
This performs regular arithmetic.

	The target register is a pointer type. The first source register must
also be a pointer type, and the second source register must be uint.
This performs pointer arithmetic.






7.3.2. ari.sub


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Subtracts the value in the first source register from the value in the second
source register and stores the result in the target register.

This instruction can have one of two forms:


	All three registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, and float64.
This performs regular arithmetic.

	The target register is a pointer type. The first source register must
also be a pointer type, and the second source register must be uint.
This performs pointer arithmetic.






7.3.3. ari.mul


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Multiplies the value in the first source register with the value in the
second source register and stores the result in the target register.

All three registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, and float64.




7.3.4. ari.div


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Divides the value in the first source register by the value in the second
source register and stores the result in the target register.

If the divisor is zero and the computation involves integers, behavior is
undefined. For floating-point types, behavior depends on the machine.

All three registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, and float64.




7.3.5. ari.rem


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Computes the remainder resulting from dividing the first source register
with the second source register and stores the result in the target
register.

If the divisor is zero and the computation involves integers, behavior is
undefined. For floating-point types, behavior depends on the machine.

All three registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, and float64.




7.3.6. ari.neg


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Negates the value in the source register and assigns the result to the target
register.

Both registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, and float64.




7.3.7. bit.and


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Performs a bit-wise AND operation on the two source registers and assigns
the result to the target register.

All three registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int,  and uint.




7.3.8. bit.or


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Performs a bit-wise OR operation on the two source registers and assigns
the result to the target register.

All three registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, and uint.




7.3.9. bit.xor


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Performs a bit-wise XOR operation on the two source registers and assigns
the result to the target register.

All three registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, and uint.




7.3.10. bit.neg


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Performs a bit-wise complement negation operation on the source register
and assigns the result to the target register.

Both registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, and uint.




7.3.11. not


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Performs a logical negation operation on the source register and assigns the
result to the target register.

If the source equals 0, the result is 1. In all other cases, the result is 0.

Both registers must be of the exact same type. Allowed types are
int8, uint8, int16, uint16, int32, uint32, int64,
uint64, int, uint, float32, and float64.




7.3.12. shl


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Shifts the bits of the first source register to the left by the amount given
in the second source register and assigns the result to the target register.

If the second source register is larger than or equal to the amount of bits of
the first source register’s type, behavior is undefined.

The first register and the target register must be of the exact same type.
Allowed types are int8, uint8, int16, uint16, int32,
uint32, int64, uint64, int, and uint.

The second register must be of type uint.




7.3.13. shr


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Shifts the bits of the first source register to the right by the amount given
in the second source register and assigns the result to the target register.

If the type of the values being shifted is signed, the shift is an arithmetic
shift (i.e. it is done with sign extension); otherwise, a logical shift is done
(i.e. zero extension is used).

If the second source register is larger than or equal to the amount of bits of
the first source register’s type, behavior is undefined.

The first register and the target register must be of the exact same type.
Allowed types are int8, uint8, int16, uint16, int32,
uint32, int64, uint64, int, and uint.

The second register must be of type uint.




7.3.14. rol


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Rotates the bits of the value in the first source register left by the amount
given in the second source register. This is similar to shl, but instead of
performing zero extension, the rotated bits are inserted.

If the second source register is larger than or equal to the amount of bits of
the first source register’s type, behavior is undefined.

The first register and the target register must be of the exact same type.
Allowed types are int8, uint8, int16, uint16, int32,
uint32, int64, uint64, int, and uint.

The second register must be of type uint.




7.3.15. ror


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Rotates the bits of the value in the first source register right by the amount
given in the second source register. This is similar to shr, but instead of
performing zero/sign extension, the rotated bits are inserted.

If the second source register is larger than or equal to the amount of bits of
the first source register’s type, behavior is undefined.

The first register and the target register must be of the exact same type.
Allowed types are int8, uint8, int16, uint16, int32,
uint32, int64, uint64, int, and uint.

The second register must be of type uint.






7.4. Memory management instructions

These instructions are used to allocate and free memory from the system.
There are instructions that operate on the native heap and others that
operate on the GC-managed heap.


7.4.1. mem.alloc


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Allocates memory from either the native heap (if the target register is a
pointer) or from the GC currently in use (if the target register is an
array).

The source register indicates how many elements to allocate memory for.
This means that if the target register is a pointer, the total amount of
memory allocated is the size of the target register’s element type times
the element count. Otherwise, it represents the amount of array elements
to be allocated. The source register must be of type uint.

If the target register is a pointer and the source register holds a zero
value, the target register is set to a null pointer. For the array case,
a zero-sized array will be allocated.

If the requested amount of memory could not be allocated, a null pointer is
assigned to the target register; otherwise, the pointer to the allocated
memory is assigned.

If the allocation was successful, all allocated memory is guaranteed to be
completely zeroed out.

The target register must be a pointer or an array.




7.4.2. mem.new


	Has target register

	Yes

	Source registers

	0

	Operand type

	None



Allocates memory from the native heap (if the target register is a pointer)
or from the GC currently in use (if the target register is a reference or a
vector).

This operation allocates memory for a single fixed-size value. Thus, the
the amount of memory allocated is the size of the element type of the
target register (for vectors, this includes all elements).

If the requested amount of memory could not be allocated, a null pointer
is assigned to the target register; otherwise, the pointer to the allocated
memory is assigned.

If the allocation was successful, all allocated memory is guaranteed to be
completely zeroed out.

The target register must be a pointer, a reference, or a vector.




7.4.3. mem.free


	Has target register

	No

	Source registers

	1

	Operand type

	None



Frees the memory pointed to by a pointer previously allocated with either
mem.alloc or mem.new.

If the pointer passed in is null, no operation is performed. If the pointer
is in some way invalid (e.g. it points to the interior of a block of
allocated memory or has never been allocated in the first place), undefined
behavior occurs.

This instruction deallocates from the right heap depending on the type of the
source register (i.e. the GC-managed heap for arrays, vectors, and references,
and the native heap for pointers).

The source register must be a pointer, a reference, an array, or a vector.

When invoking this instruction on a reference, an array, or a vector, it is
assumed that the object being freed is only live in the source register, and
absolutely nowhere else in the program. This makes this instruction very
dangerous to use for managed objects. It is undefined behavior to use memory
that has been freed.




7.4.4. mem.salloc


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Similar to mem.alloc. This instruction, however, allocates the memory on the
stack. This means that memory allocated with this instruction shall not be
freed manually with mem.free, as the code generator inserts cleanup code
automatically.

As with mem.alloc, this instruction assigns a null pointer if the source
register holds a value of zero.

If a stack overflow occurs in the allocation, behavior is undefined.

The source register must be of type uint.

The target register must be a pointer.




7.4.5. mem.snew


	Has target register

	Yes

	Source registers

	0

	Operand type

	None



Similar to mem.new. This instruction, however, allocates the memory on the
stack. This means that memory allocated with this instruction shall not be
freed manually with mem.free, as the code generator inserts cleanup code
automatically.

If a stack overflow occurs in the allocation, behavior is undefined.

The target register must be a pointer.




7.4.6. mem.pin


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Pins a reference previously allocated with mem.new or mem.alloc so that
the object it points to cannot be relocated by a compacting GC. This is
useful when calling into external code via ffi, as the GC cannot track
GC-managed memory beyond managed code. This also implies that the memory
which is pinned will never be collected until it is unpinned. Therefore,
memory leaks can happen if care is not taken to correctly mem.unpin the
memory.

Passing a null or already-pinned reference to this instruction results in
undefined behavior. The resulting value of this instruction is an opaque
handle which only has meaning to the specific GC implementation. The handle
is intended for use with mem.unpin later.

The source register must be a reference, an array, or a vector.

The target register must be of type uint.




7.4.7. mem.unpin


	Has target register

	No

	Source registers

	1

	Operand type

	None



Unpins memory previously pinned with mem.pin. The source register must be
a handle returned by mem.pin. Any invalid handle value will result in
undefined behavior (this includes handles already unpinned).

Care should be taken to only unpin the memory once it is certain that the
memory is no longer referenced outside managed code. Failure to ensure this
can result in undefined behavior.






7.5. Memory aliasing instructions

These instructions can be used for general pointer manipulation, such as
dereferencing, setting memory values, etc.


7.5.1. mem.get


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Dereferences the pointer in the source register and assigns the resulting
element value to the target register.

If the dereference operation failed in some way (e.g. the source pointer is
null or points to invalid memory), undefined behavior occurs.

Dereferencing function pointers is not possible. Doing so by casting a
function pointer to a regular pointer results in undefined behavior.

The source register must be a pointer, while the target register must be
the element type of the source register’s pointer type.




7.5.2. mem.set


	Has target register

	No

	Source registers

	2

	Operand type

	None



Sets the value of the memory pointed to by the pointer in the first
register to the value of the second register.

If the memory addressing operation failed in some way (e.g. the target
pointer is null or points to invalid memory), undefined behavior occurs.

Setting the pointed-to value of function pointers is not possible. Doing so
by casting a function pointer to a regular pointer results in undefined
behavior.

The first register must be a pointer type, while the second register must
be the element type of the first register’s pointer type.




7.5.3. mem.addr


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Takes the address of the value in the source register and assigns the
address to the target register.

Dereferencing or writing to the resulting address once the current stack frame
is no longer valid will result in undefined behavior.

The source register can be of any type, while the target register must be
a pointer to the source register’s type.






7.6. Array and vector instructions

These instructions are used to index into and manipulate arrays and
vectors.


7.6.1. array.addr


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Retrieves the address to the element given in the second source register
of the array given in the first source register and assigns it to the
target register.

If the source array/vector is null, behavior is undefined. Taking the address
of an element beyond the bounds of an array is acceptable, but dereferencing
or writing to it results in undefined behavior.

The first source register must be an array, vector, or static array, while the
second register must be of type uint.

The target register must be a pointer to the first source register’s element
type.




7.6.2. array.len


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Loads the length of an array into the target register. For arrays, this is
the dynamic size, while for vectors and static arrays, it is the fixed size.

If the source array/vector is null, behavior is undefined.

The source register must be an array, vector, or static array.

The target register must be of type uint.




7.6.3. array.ari.add


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs arithmetic addition on elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in ari.add, and must have the same element type.

If the first source register is an array or vector of a pointer type, the
third source register must either be of type uint or an array or vector
of these. Otherwise, the third source register must be of the element type
of the first source register, or be an array or vector of the first source
register’s element type.




7.6.4. array.ari.sub


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs arithmetic subtraction on elements of arrays, vectors, or static
arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in ari.sub, and must have the same element type.

If the first source register is an array or vector of a pointer type, the
third source register must either be of type uint or an array or vector
of these. Otherwise, the third source register must be of the element type
of the first source register, or be an array or vector of the first source
register’s element type.




7.6.5. array.ari.mul


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs arithmetic multiplication on elements of arrays, vectors, or static
arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in ari.mul, and must have the same element type.

The third source register must be of the element type of the first source
register, or be an array or vector of the first source register’s element
type.




7.6.6. array.ari.div


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs arithmetic division on elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs. If
the divisor is zero and the computation involves integers, behavior is
undefined. For floating-point types, behavior depends on the machine.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in ari.div, and must have the same element type.

The third source register must be of the element type of the first source
register, or be an array or vector of the first source register’s element
type.




7.6.7. array.ari.rem


	Has target register

	No

	Source registers

	3

	Operand type

	None



Computes the remainder resulting from dividing elements of arrays, vectors, or
static arrays with the given value(s).

If any of the involved arrays/vectors are null, undefined behavior occurs. If
the divisor is zero and the computation involves integers, behavior is
undefined. For floating-point types, behavior depends on the machine.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in ari.rem, and must have the same element type.

The third source register must be of the element type of the first source
register, or be an array or vector of the first source register’s element
type.




7.6.8. array.ari.neg


	Has target register

	No

	Source registers

	2

	Operand type

	None



Negates all elements of an array, vector, or static array.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The two source registers must be arrays, vectors, or static arrays of the
types allowed in ari.neg, and must have the same element type.




7.6.9. array.bit.and


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs bit-wise AND on elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in bit.and, and must have the same element type.

The third source register must be of the element type of the first source
register, or be an array or vector of the first source register’s element
type.




7.6.10. array.bit.or


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs bit-wise OR on elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in bit.or, and must have the same element type.

The third source register must be of the element type of the first source
register, or be an array or vector of the first source register’s element
type.




7.6.11. array.bit.xor


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs bit-wise XOR on elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in bit.xor, and must have the same element type.

The third source register must be of the element type of the first source
register, or be an array or vector of the first source register’s element
type.




7.6.12. array.bit.neg


	Has target register

	No

	Source registers

	2

	Operand type

	None



Performs a bit-wise complement negation operation on all elements of an array,
vector, or static array.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The two source registers must be arrays, vectors, or static arrays of the
types allowed in bit.neg, and must have the same element type.




7.6.13. array.not


	Has target register

	No

	Source registers

	2

	Operand type

	None



Performs a logical negation on all elements of an array, vector, or static
array.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in not, and must have the same element type.




7.6.14. array.shl


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a left shift of the bits of elements in an array, vector, or static
array.

If any of the involved arrays/vectors are null, undefined behavior occurs. If
the shift amount is larger than or equal to the amount of bits of the element
types involved, behavior is undefined.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in shl, and must have the same element type.

The third source register must be of type uint or an array, vector, or
static array of these.




7.6.15. array.shr


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a right shift of the bits of elements in an array, vector, or static
array.

If any of the involved arrays/vectors are null, undefined behavior occurs. If
the shift amount is larger than or equal to the amount of bits of the element
types involved, behavior is undefined.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in shr, and must have the same element type.

The third source register must be of type uint or an array, vector, or
static array of these.




7.6.16. array.rol


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a left rotation of bits of the elements in an array, vector, or
static array.

If any of the involved arrays/vectors are null, undefined behavior occurs. If
the shift amount is larger than or equal to the amount of bits of the element
types involved, behavior is undefined.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in rol, and must have the same element type.

The third source register must be of type uint or an array, vector, or
static array of these.




7.6.17. array.ror


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a right rotation of bits of the elements in an array, vector, or
static array.

If any of the involved arrays/vectors are null, undefined behavior occurs. If
the shift amount is larger than or equal to the amount of bits of the element
types involved, behavior is undefined.

The first two source registers must be arrays, vectors, or static arrays of
the types allowed in ror, and must have the same element type.

The third source register must be of type uint or an array, vector, or
static array of these.




7.6.18. array.conv


	Has target register

	No

	Source registers

	2

	Operand type

	None



Converts elements in the array, vector, or static array in the first source
register to the element type of the array, vector, or static array in the
second source register and assigns them to the second source register’s
elements incrementally.

The following conversions are valid:


	T[] -> U[] for any valid T -> U conversion.

	T[] -> U[F] for any valid T -> U conversion.

	T[] -> U{F} for any valid T -> U conversion.

	T[E] -> U[] for any valid T -> U conversion.

	T[E] -> U[F] for any valid T -> U conversion.

	T[E] -> U{F} for any valid T -> U conversion.

	T{E} -> U[] for any valid T -> U conversion.

	T{E} -> U[F] for any valid T -> U conversion.

	T{E} -> U{F} for any valid T -> U conversion.



If any of the involved arrays/vectors are null, undefined behavior occurs.

See also conv.




7.6.19. array.cmp.eq


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a cmp.eq on all elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first source register must be an array, vector, or static array of
uint. The second and third source registers must be arrays, vectors, or
static arrays having the same element type.




7.6.20. array.cmp.neq


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a cmp.neq on all elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first source register must be an array, vector, or static array of
uint. The second and third source registers must be arrays, vectors, or
static arrays having the same element type.




7.6.21. array.cmp.gt


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a cmp.gt on all elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first source register must be an array, vector, or static array of
uint. The second and third source registers must be arrays, vectors, or
static arrays having the same element type.




7.6.22. array.cmp.lt


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a cmp.lt on all elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first source register must be an array, vector, or static array of
uint. The second and third source registers must be arrays, vectors, or
static arrays having the same element type.




7.6.23. array.cmp.gteq


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a cmp.gteq on all elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first source register must be an array, vector, or static array of
uint. The second and third source registers must be arrays, vectors, or
static arrays having the same element type.




7.6.24. array.cmp.lteq


	Has target register

	No

	Source registers

	3

	Operand type

	None



Performs a cmp.lteq on all elements of arrays, vectors, or static arrays.

If any of the involved arrays/vectors are null, undefined behavior occurs.

The first source register must be an array, vector, or static array of
uint. The second and third source registers must be arrays, vectors, or
static arrays having the same element type.






7.7. Structure field instructions

These instructions are used to operate on fields contained in structures
types and pointers to them.


7.7.1. field.addr


	Has target register

	Yes

	Source registers

	1

	Operand type

	Member reference



Gets the address of the field given as the operand on the structure given
in the source register and assigns it to the target register.

If the source register is a reference or a pointer, and is null, behavior
is undefined.

Note that if the given structure is in a register with no indirection (i.e. on
the stack), dereferencing and writing to the pointer’s address when the
current stack frame is no longer valid results in undefined behavior. Also, if
the given structure is a reference, the resulting pointer is effectively an
interior pointer. This means that reading and writing the memory it points to
is only valid while the object it points into is live. Reading or writing to
its address when the object is no longer live results in undefined behavior.

The source register must be a structure or a pointer or reference to a
structure with at most one indirection.

The target register must be a pointer to the type of the field given in
the operand.




7.7.2. field.user.addr


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Fetches the address of the source register’s header user data field and
assigns it to the target register.

If the source register is null, behavior is undefined.

Note that, since the resulting address is effectively an interior pointer, it
will only be recognized by the GC in roots. Dereferencing the pointer or
writing to its address is only legal while the object it points into is live.
Reading or writing to its address when the object is no longer live results in
undefined behavior.

The source register must be a reference, an array, or a vector.

The target register must be a pointer to either a reference, an array, or a
vector.




7.7.3. field.global.addr


	Has target register

	Yes

	Source registers

	0

	Operand type

	Global field reference



Similar to field.addr, but operates on global fields. This means that the
instruction does not need an instance of the structure to set the value of
the given field.

Pointers to global fields are always valid.




7.7.4. field.thread.addr


	Has target register

	Yes

	Source registers

	0

	Operand type

	Global field reference



Similar to field.addr, but operates on TLS fields. This means that the
instruction does not need an instance of the structure to set the value of
the given field.

Pointers to TLS fields are valid so long as the thread owning the field
instance that a pointer is pointing to has not exited.






7.8. Comparison instructions

These instructions test relativity of their source registers.


7.8.1. cmp.eq


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Compares the two source registers for equality. If they are equal, the
target register is set to 1; otherwise, 0.

The source registers must be of the exact same type, and can be one of
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, float64, or any
pointer type (in which case the pointers are compared for equality).

The target register must be of type uint.




7.8.2. cmp.neq


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Compares the two source registers for inequality. If they are unequal, the
target register is set to 1; otherwise, 0.

The source registers must be of the exact same type, and can be one of
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, float64, or any
pointer type (in which case the pointers are compared for equality).

The target register must be of type uint.




7.8.3. cmp.gt


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Determines if the value in the first source register is greater than the
value in the second source register. If this is true, the target register
is set to 1; otherwise, 0.

The source registers must be of the exact same type, and can be one of
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, float64, or any
pointer type (in which case the pointers are compared).

The target register must be of type uint.




7.8.4. cmp.lt


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Determines if the value in the first source register is lesser than the
value in the second source register. If this is true, the target register
is set to 1; otherwise, 0.

The source registers must be of the exact same type, and can be one of
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, float64, or any
pointer type (in which case the pointers are compared).

The target register must be of type uint.




7.8.5. cmp.gteq


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Determines if the value in the first source register is greater than or
equal to the value in the second source register. If this is true, the
target register is set to 1; otherwise, 0.

The source registers must be of the exact same type, and can be one of
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, float64, or any
pointer type (in which case the pointers are compared).

The target register must be of type uint.




7.8.6. cmp.lteq


	Has target register

	Yes

	Source registers

	2

	Operand type

	None



Determines if the value in the first source register is lesser than or
equal to the value in the second source register. If this is true, the
target register is set to 1; otherwise, 0.

The source registers must be of the exact same type, and can be one of
int8, uint8, int16, uint16, int32, uint32,
int64, uint64, int, uint, float32, float64, or any
pointer type (in which case the pointers are compared).

The target register must be of type uint.






7.9. Function invocation instructions

These instructions are used to call functions and function pointers.


7.9.1. arg.push


	Has target register

	No

	Source registers

	1

	Operand type

	None



Enqueues the value in the source register into the functiona call argument
queue.

This instruction must be immediately followed by another arg.push or any
of call, call.tail, call.indirect, invoke, invoke.tail, or
invoke.indirect.

The type of the value must equal the type of the function parameter at the
same index as this instruction.




7.9.2. arg.pop


	Has target register

	Yes

	Source registers

	0

	Operand type

	None



Dequeues an argument given to a function. This instruction can only appear
in the entry basic block of a function, and must either be the first
instruction or come right after a previous arg.pop.

The target register must match the type of the function parameter at the
same index as this instruction.




7.9.3. call


	Has target register

	Yes

	Source registers

	0

	Operand type

	Function reference



This performs a call to the function given as operand. This instruction
expects that the function has a return type (i.e. it does not return
void).

This instruction should follow immediately after a correct sequence of
arg.push instructions.

The result (as returned by the called function) is assigned to the target
register.

The target register’s type must match the given function’s return type.




7.9.4. call.tail


	Has target register

	Yes

	Source registers

	0

	Operand type

	Function reference



Works exactly like a call, except that this instruction hints to the code
generator that tail call optimization must be done.

This instruction must be immediately followed by a return instruction which
must return the resulting value of this call.

Tail calls can only be done in functions with standard calling convention.




7.9.5. call.indirect


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Performs a function call like the call instruction, but indirectly.

This instruction must (like call) be immediately preceeded by a correct
arg.push sequence matching the function pointer’s signature.

If the given function pointer is null or does not point to a valid function
entry point, behavior is undefined.

The result of the call is assigned to the target register.

The source register must be a function pointer to a function returning
non-void, and the target register must match the function pointer’s
return type.




7.9.6. invoke


	Has target register

	No

	Source registers

	0

	Operand type

	Function reference



This instruction does the same thing as call, but only works for functions
with no return type (i.e. returning void), and thus has no target
register.




7.9.7. invoke.tail


	Has target register

	No

	Source registers

	0

	Operand type

	Function reference



This instruction does the same thing as call.tail, but only works for
functions with no return type (i.e. returning void), and thus has no
target register.

This instruction must be immediately followed by a leave instruction.

Tail calls can only be done in functions with standard calling convention.




7.9.8. invoke.indirect


	Has target register

	No

	Source registers

	1

	Operand type

	None



This instruction does the same thing as call.indirect, but only works for
function pointers with no return type (i.e. returning void), and thus
has no target register.






7.10. Control flow instructions

These instructions are used to transfer control from one point in a program
to another. Most are generally terminator instructions.


7.10.1. jump


	Has target register

	No

	Source registers

	0

	Operand type

	Basic block



Performs an unconditional jump to the specified basic block.

This is a terminator instruction.




7.10.2. jump.cond


	Has target register

	No

	Source registers

	1

	Operand type

	Branch selector



Performs a jump to the first basic block if the value in the source
register does not equal 0; otherwise, jumps to the second basic block.

The source register must be of type uint.

This is a terminator instruction.




7.10.3. leave


	Has target register

	No

	Source registers

	0

	Operand type

	None



Leaves (i.e. returns from) the current function. This is only valid if
the function returns void (or, in other words, has no return type).

Using this instruction in a noreturn function results in undefined
behavior.

This is a terminator instruction.




7.10.4. return


	Has target register

	No

	Source registers

	1

	Operand type

	None



Returns from the current function with the value in the source register
as the return value. This is only valid in functions that don’t return
void (i.e. have a return type).

Using this instruction in a noreturn function results in undefined
behavior.

The source register must be the exact same type as the function’s return
type.

This is a terminator instruction.




7.10.5. dead


	Has target register

	No

	Source registers

	0

	Operand type

	None



Informs the optimizer of a branch that can safely be assumed unreachable
(and thus optimized out). Any code following this instruction is assumed
to be dead.

This is a terminator instruction.




7.10.6. phi


	Has target register

	Yes

	Source registers

	0

	Operand type

	Register selector



This instruction is used while the code is in SSA form. Due to the nature
of SSA, it is often necessary to determine which register to use based on
where control flow came from. This instruction picks the register which
was assigned in the basic block control flow entered from and assigns it
to the target register.

This instruction is valid only during analysis and optimization. It must
not appear in code passed to the interpreter or JIT/AOT engines.

The target register and selector registers must all be of the same type.

Note that this instruction doesn’t count as a control flow instruction.
That is to say, multiple phi instructions are allowed in a basic block
while in SSA form, and they do not act as terminators.




7.10.7. raw


	Has target registers

	No

	Source registers

	0

	Operand type

	8-bit unsigned integer array



This instruction tells the code generator to insert raw machine code (which
is given as the byte array operand) in the generated machine code stream.
This must be the only instruction in a raw function.

This instruction has a few consequences:


	It must be the only instruction in the function.

	The function must have cdecl or stdcall calling convention.

	All optimizations that would affect the layout of the stack cannot happen.



Of course, usage of this instruction results in unportable code.

This instruction is primarily intended to allow the implementation of
inline assembly in high-level languages. Arguments given to raw functions
are passed according to the calling convention of the function and the
return value (if any) should be passed according to the calling convention
too.

It should be noted that this is not sufficient to implement full-blown
inline assembly as in many C and C++ compilers. A general requirement of
inline assembly using this instruction is that the raw blob must contain
code that is neutral to relocations, as it is not in any way guaranteed
where the code blob will be emitted in memory.

If the raw machine code returns and the function is marked noreturn,
undefined behavior results.

This is a terminator instruction.




7.10.8. ffi


	Has target register

	No

	Source registers

	0

	Operand type

	Foreign function



This instruction marks the function as an FFI function. FFI functions must
only contain this one instruction, which points the code generator to the
actual function entry point in a native library.

This instruction has a few consequences:


	It must be the only instruction in the function.

	The function must have cdecl or stdcall calling convention.



Note that the native function isn’t linked to statically. The execution
engine (either the interpreter or the JIT/AOT engines) will attempt to
locate the native entry point when the FFI function is called.

If the native function returns and the function is marked noreturn,
undefined behavior results.

This is a terminator instruction.




7.10.9. forward


	Has target register

	No

	Source registers

	0

	Operand type

	Foreign function



This instruction marks a function as a reference. This means that, when a
call to the function containing this instruction is made, the execution
engine will forward it to a function in another module, as specified in
the signature in the operand.

The operand must point to a function with standard calling convention in
a managed MCI module. The module name should not contain the file extension;
only the base name.

The function, when located in the specified module, is expected to have the
exact same return type, parameter types, and attributes as the function this
instruction is used in. If it does not, a runtime error results.

Note that using forwarded functions results in some classes of optimizations
(e.g. inlining) being disabled for calls to such functions.

This is a terminator instruction.






7.11. Exception handling instructions

These are used to indicate and handle errors.


7.11.1. eh.throw


	Has target register

	No

	Source registers

	1

	Operand type

	None



Throws an exception. This causes the runtime to unwind the stack until an
appropriate unwind block is found. If an unwind block is found, control
transfers to that block. If none is found, the program is terminated.

If the given reference is null, behavior is undefined.

The source register must be a reference.

This is a terminator instruction.




7.11.2. eh.rethrow


	Has target register

	No

	Source registers

	0

	Operand type

	None



Rethrows an in-flight exception. This is different from using eh.throw
to rethrow an exception reference in that this instruction does not reset
the stack trace.

This instruction may only appear in unwind blocks.

This is a terminator instruction.




7.11.3. eh.catch


	Has target register

	Yes

	Source registers

	0

	Operand type

	None



This catches the current in-flight exception and assigns it to the target
register. Note that this is not type-safe; it’s similar to casting one
reference type to another with conv. In order to determine the exact
exception type, language/ABI-specific checks must be made.

This instruction may only appear in unwind blocks.

The target register must be a reference.






7.12. Miscellaneous instructions

Instructions that don’t quite fit anywhere else.


7.12.1. copy


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



This instruction copies the value in the source register into the target
register. This is similar to a simple assignment in most programming
languages; it is not a deep copy.

This instruction is not valid in SSA form.

The source register’s type must match the target register’s type.




7.12.2. conv


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Converts the value in the source register from one type to another, and
assigns the resulting value to the target register.

The following conversions are valid:


	T -> U for any primitives T and U (int8, uint8,
int16, uint16, int32, uint32, int64, uint64,
int, uint, float32, and float64).

	T* -> U* for any T and any U.

	T* -> uint or int for any T.

	uint or int -> T* for any T.

	T -> U for any managed types (reference, array, or vector) T
and U.

	R1(T1, ...) -> R2(U1, ...) for any R1, any R2, and any
amount and type of T n and U m.

	R(T1, ...) -> U* for any R, any amount and type of T
n, and any U.

	T* -> R(U1, ...) for any T, any R, and any amount and
type of Un.






7.12.3. fence


	Has target register

	No

	Source registers

	0

	Operand type

	None



Inserts a full read/write memory barrier. This ensures that all loads and
stores prior to this instruction will always be executed before loads and
stores following this instruction. This is particularly useful in lock-free
data structures and similar low-level constructs.




7.12.4. tramp


	Has target register

	Yes

	Source registers

	1

	Operand type

	None



Constructs a trampoline for a given function pointer. Trampolines are useful
if the function pointer is to be passed to external code (e.g. via ffi) which
might use the function pointer in threads not registered with the MCI. The
generated trampoline will ensure that such an external thread is correctly
registered before allowing it to call into managed code.

The source register must be any function pointer type. The target register
must be a function pointer type with cdecl or stdcall calling
convention matching the parameters and return type of the source register.
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8. Intrinsics

The MCI defines a number of built-in functions that can be called by any
program compiled with the infrastructure. These all reside in the mci
module, which is actually implemented in D code inside the mci.vm
library.

All intrinsics are thread safe.

This module is given special treatment by the assembler, so you do not
need to provide a physical module that implements it.


8.1. Types


8.1.1. Object

This is an opaque type which is useful for representing an arbitrary
reference type:

type Object
{
}








8.1.2. Weak

This is an opaque wrapper type given special treatment by garbage collector
implementations that support it. It facilitates so-called weak references:

type Weak
{
}





Instances of this type should not be manipulated directly. The layout of this
type is completely unspecified and any reliance on it is unsupported. To work
with instances of Weak, use the related intrinsics.






8.2. Configuration information

These intrinsics retrieve information about the environment the MCI was
compiled in.


8.2.1. get_compiler


	Signature

	uint8 get_compiler()



Gets a value indicating which compiler was used to build the MCI.

Possible values:







	Value
	Description




	0
	Unknown compiler.


	1
	Digital Mars D (DMD).


	2
	GNU D Compiler (GDC).


	3
	LLVM D Compiler (LDC).








8.2.2. get_architecture


	Signature

	uint8 get_architecture()



Gets a value indicating which architecture the MCI was compiled for.

Possible values:







	Value
	Description




	0
	x86 (32-bit or 64-bit).


	1
	ARM (32-bit).


	2
	PowerPC (32-bit or 64-bit).


	3
	Itanium (64-bit).


	4
	MIPS (32-bit or 64-bit).








8.2.3. get_operating_system


	Signature

	uint8 get_operating_system()



Gets a value indicating which operating system the MCI was compiled on.

Possible values:







	Value
	Description




	0
	All Windows systems.


	1
	All Linux systems.


	2
	Mac OS X (and other Darwin systems).


	3
	FreeBSD.


	4
	Solaris.


	5
	AIX.








8.2.4. get_endianness


	Signature

	uint8 get_endianness()



Gets a value indicating which endianness the MCI was compiled for.

Possible values:







	Value
	Description




	0
	Little endian.


	1
	Big endian.








8.2.5. get_emulation_layer


	Signature

	uint8 get_emulation_layer()



Gets a value indicating which emulation layer the MCI is compiled under.

Possible values:







	Value
	Description




	0
	No emulation layer.


	1
	Cygwin.


	2
	MinGW.








8.2.6. is_32_bit


	Signature

	uint is_32_bit()



Gets a value indicating whether the MCI is compiled for 32-bit pointers.

This function returns 0 if the MCI is compiled for 64-bit pointers; 1 if
it’s compiled for 32-bit pointers.






8.3. Atomic operations


8.3.1. atomic_load


	Signature

	Object& atomic_load(Object&*)



Atomically loads the reference from the memory location pointed to by the
first argument.

Full sequential consistency is guaranteed.




8.3.2. atomic_store


	Signature

	void atomic_store(Object&*, Object&)



Atomically sets the location pointed to by the first argument to the reference
in the second argument.

Full sequential consistency is guaranteed.




8.3.3. atomic_exchange


	Signature

	uint atomic_exchange(Object&*, Object&, Object&)



Stores the reference in the third argument to the location pointed to by
the first argument if the reference pointed to by the first argument is
equal to the second argument. All of this happens atomically.

Returns 1 if the store happened; otherwise, returns 0.

Full sequential consistency is guaranteed.




8.3.4. atomic_load_u


	Signature

	uint atomic_load_u(uint*)



Atomically loads the value from the memory location pointed to by the first
argument.

Full sequential consistency is guaranteed.




8.3.5. atomic_store_u


	Signature

	void atomic_store_u(uint*, uint)



Atomically sets the location pointed to by the first argument to the value in
the second argument.

Full sequential consistency is guaranteed.




8.3.6. atomic_exchange_u


	Signature

	uint atomic_exchange_u(uint*, uint, uint)



Stores the value in the third argument to the location pointed to by the
first argument if the value pointed to by the first argument is equal to
the second argument. All of this happens atomically.

Returns 1 if the store happened; otherwise, returns 0.

Full sequential consistency is guaranteed.




8.3.7. atomic_add_u


	Signature

	uint atomic_add_u(uint*, uint)



Atomically adds the value in the second argument to the value pointed to by
the first argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.8. atomic_sub_u


	Signature

	uint atomic_sub_u(uint*, uint)



Atomically subtracts the value in the second argument from the value pointed
to by the first argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.9. atomic_mul_u


	Signature

	uint atomic_mul_u(uint*, uint)



Atomically multiplies the value pointed to by the first argument with the
value in the second argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.10. atomic_div_u


	Signature

	uint atomic_div_u(uint*, uint)



Atomically divides the value pointed to by the first argument with the value
in the second argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.11. atomic_rem_u


	Signature

	uint atomic_rem_u(uint*, uint)



Atomically computes the remainder from dividing the value pointed to by the
first argument by the value in the second argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.12. atomic_and_u


	Signature

	uint atomic_and_u(uint*, uint)



Aotmically computes bit-wise AND between the value pointed to by the first
argument and the value in the second argument and return the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.13. atomic_or_u


	Signature

	uint atomic_or_u(uint*, uint)



Aotmically computes bit-wise OR between the value pointed to by the first
argument and the value in the second argument and return the result.

The result is also assigned to the location pointed to by the first argument.




8.3.14. atomic_xor_u


	Signature

	uint atomic_xor_u(uint*, uint)



Aotmically computes bit-wise XOR between the value pointed to by the first
argument and the value in the second argument and return the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.15. atomic_load_s


	Signature

	int atomic_load_s(int*)



Atomically loads the value from the memory location pointed to by the first
argument.

Full sequential consistency is guaranteed.




8.3.16. atomic_store_s


	Signature

	void atomic_store_s(int*, int)



Atomically sets the location pointed to by the first argument to the value in
the second argument.

Full sequential consistency is guaranteed.




8.3.17. atomic_exchange_s


	Signature

	int atomic_exchange_s(int*. int, int)



Stores the value in the third argument to the location pointed to by the
first argument if the value pointed to by the first argument is equal to
the second argument. All of this happens atomically.

Returns 1 if the store happened; otherwise, returns 0.

Full sequential consistency is guaranteed.




8.3.18. atomic_add_s


	Signature

	int atomic_add_s(int*, int)



Atomically adds the value in the second argument to the value pointed to by
the first argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.19. atomic_sub_s


	Signature

	int atomic_sub_s(int*, int)



Atomically subtracts the value in the second argument from the value pointed
to by the first argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.20. atomic_mul_s


	Signature

	int atomic_mul_s(int*, int)



Atomically multiplies the value pointed to by the first argument with the
value in the second argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.21. atomic_div_s


	Signature

	int atomic_div_s(int*, int)



Atomically divides the value pointed to by the first argument with the value
in the second argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.22. atomic_rem_s


	Signature

	int atomic_rem_s(int*, int)



Atomically computes the remainder from dividing the value pointed to by the
first argument by the value in the second argument and returns the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.23. atomic_and_s


	Signature

	int atomic_and_s(int*, int)



Aotmically computes bit-wise AND between the value pointed to by the first
argument and the value in the second argument and return the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.24. atomic_or_s


	Signature

	int atomic_or_s(int*, int)



Aotmically computes bit-wise OR between the value pointed to by the first
argument and the value in the second argument and return the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.




8.3.25. atomic_xor_s


	Signature

	int atomic_xor_s(int*, int)



Aotmically computes bit-wise XOR between the value pointed to by the first
argument and the value in the second argument and return the result.

The result is also assigned to the location pointed to by the first argument.

Full sequential consistency is guaranteed.






8.4. Memory management


8.4.1. gc_collect


	Signature

	void gc_collect()



Instructs the GC to perform a full collection. This may cause a stop of the
world.




8.4.2. gc_minimize


	Signature

	void gc_minimize()



Instructs the GC to do minimal GC work. This function is appropriate for
tight loops, and is relatively cheap.




8.4.3. gc_get_collections


	Signature

	uint64 gc_get_collections()



Gets a value indicating the amount of collections the GC has performed.




8.4.4. gc_add_pressure


	Signature

	void gc_add_pressure(uint)



Informs the GC that a significant amount of unmanaged memory (given by the
argument) is about to be allocated.




8.4.5. gc_remove_pressure


	Signature

	void gc_remove_pressure(uint)



Informs the GC that a significant amount of unmanaged memory (given by the
argument) is about to be freed.




8.4.6. gc_is_generational


	Signature

	uint gc_is_generational()



Gets a value indicating whether the GC is generational.




8.4.7. gc_get_generations


	Signature

	uint gc_get_generations()



Gets the amount of generations managed by the GC. This is guaranteed to be a
constant number.

Calling this function if the GC is not generational results in undefined
behavior.




8.4.8. gc_generation_collect


	Signature

	void gc_generation_collect(uint)



Instructs the GC generation given by the ID in the argument to perform a full
collection. This may cause a stop of the world.

Calling this function if the GC is not generational results in undefined
behavior.




8.4.9. gc_generation_minimize


	Signature

	void gc_generation_minimize(uint)



Instructs the GC generation given by the ID in the argument to perform as much
cleanup work as it can without stopping the world.

Calling this function if the GC is not generational results in undefined
behavior.




8.4.10. gc_generation_get_collections


	Signature

	uint gc_generation_get_collections(uint)



Gets a value indicating the amount of collections the GC has performed in the
generation given by the ID in the argument.

Calling this function if the GC is not generational results in undefined
behavior.




8.4.11. gc_is_interactive


	Signature

	uint gc_is_interactive()



Gets a value indicating whether the GC is interactive (i.e. supports allocate
and free callbacks). Returns 1 if the GC is interactive; otherwise, returns
0.




8.4.12. gc_add_allocate_callback


	Signature

	void gc_add_allocate_callback(void(Object&) cdecl)



Adds a callback to the GC which will be called on every allocation made in
the program. The parameter given to the function pointer is the newly
allocated object. Note that the callback will be triggered right after the
memory has been allocated.

Calling this function if the GC is not interactive or with a null callback
pointer results in undefined behavior.




8.4.13. gc_remove_allocate_callback


	Signature

	void gc_remove_allocate_callback(void(Object&) cdecl)



Removes a callback previously added with gc_add_allocate_callback. If the
given callback was not registered previously, nothing happens.

Calling this function if the GC is not interactive or with a null callback
pointer results in undefined behavior.




8.4.14. gc_set_free_callback


	Signature

	void gc_set_free_callback(Object&, void(Object&) cdecl)



Adds a callback to the GC which will be called on the given object when it is
no longer reachable (i.e. considered garbage). Note that this callback will be
triggered just before the memory is actually freed. Passing a null value as the
second argument will remove any existing callback for the given object. Passing
any other value when a callback is already registered simply overwrites the
existing callback.

The callback is automatically removed when the object is freed.

Calling this function if the GC is not interactive or with a null object results
in undefined behavior.




8.4.15. gc_wait_for_free_callbacks


	Signature

	void gc_wait_for_free_callbacks()



Blocks the current thread until all free callbacks that are currently enqueued
have been processed by the finalization thread.




8.4.16. gc_is_atomic


	Signature

	uint gc_is_atomic()



Gets a value indicating whether the GC is atomic (i.e. requires read or write
barriers). Returns 1 if the GC is atomic; otherwise, returns 0.




8.4.17. gc_get_barriers


	Signature

	uint16 gc_get_barriers()



Returns flags indicating which barriers the current GC requires.

Possible flags:







	0x0
	No barriers are required.


	0x1
	Read barriers are required for memory loads.


	0x2
	Write barriers are required for memory stores.










8.5. Math and IEEE 754 operations


8.5.1. nan_with_payload_f32


	Signature

	float32 nan_with_payload_f32(uint32)



Produces a NaN (not a number) value with a given user payload. This abuses an
obscure feature of IEEE 754 that allows 22 bits of a NaN value to be set to a
user-specified value. This does of course mean that only 22 bits of the given
payload will be inserted in the NaN value.




8.5.2. nan_with_payload_f64


	Signature

	float64 nan_with_payload_f64(uint64)



Produces a NaN (not a number) value with a given user payload. This abuses an
obscure feature of IEEE 754 that allows 51 bits of a NaN value to be set to a
user-specified value. This does of course mean that only 51 bits of the given
payload will be inserted in the NaN value.




8.5.3. nan_get_payload_f32


	Signature

	uint32 nan_get_payload_f32(float32)



Extracts the 22-bit payload stored in a NaN (not a number) value.




8.5.4. nan_get_payload_f64


	Signature

	uint64 nan_get_payload_f64(float64)



Extracts the 51-bit payload stored in a NaN (not a number) value.




8.5.5. is_nan_f32


	Signature

	uint is_nan_f32(float32)



Returns 1 if the given value is NaN (not a number); otherwise, returns 0. This
function is payload-aware, so NaNs with payloads will correctly be regarded
NaN.




8.5.6. is_nan_f64


	Signature

	uint is_nan_f64(float64)



Returns 1 if the given value is NaN (not a number); otherwise, returns 0. This
function is payload-aware, so NaNs with payloads will correctly be regarded
NaN.




8.5.7. is_inf_f32


	Signature

	uint is_inf_f32(float32)



Returns 1 if the given value is positive or negative infinity; otherwise,
returns 0.




8.5.8. is_inf_f64


	Signature

	uint is_inf_f64(float64)



Returns 1 if the given value is positive or negative infinity; otherwise,
returns 0.






8.6. Weak references


8.6.1. create_weak


	Signature

	Weak& create_weak(Object&)



Creates a weak reference to an object given in the first parameter. Calling
this function with a null parameter results in undefined behavior.

This function returns null if insufficient memory is available. The weak
reference returned by this intrinsic must not be freed with mem.free or
any other deallocation mechanism.




8.6.2. get_weak_target


	Signature

	Object& get_weak_target(Weak&)



Gets the target of a given weak reference. Calling this function with a null
weak reference results in undefined behavior.

The returned object may be null, since the target of the weak reference could
have been collected since it was set.




8.6.3. set_weak_target


	Signature

	void set_weak_target(Weak&, Object&)



Sets the target of a given weak reference. Calling this function with a null
weak reference results in undefined behavior.
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9. Concurrency

This document outlines the MCI’s take on concurrency (atomicity, threading,
and so on) during code execution.


9.1. General guarantees

The virtual machine generally doesn’t make many guarantees in a concurrent
environment. In general, managed code should not depend on atomicity
guarantees made by the underlying hardware, as this makes code unportable
in very subtle and hard-to-detect ways.

In other words, we do not guarantee that reads and writes of word-sized
values will be atomic, as many other virtual machines do. While, in
practice, you may find that they actually are (due to how the hardware
works), it is not something we guarantee, and MCI will not consider
atomicity of such operations when reordering instructions and performing
other such optimizations.

The one thing that the virtual machine does guarantee is the consistency of
reference values (this includes array and vector references). What this
means is that dereferencing a reference (or an array/vector) will never
result in an invalid memory access due to concurrency (save for the null
case, naturally). Note that this is only guaranteed for references that are
correctly aligned on a native word-size boundary (which is required for
references to work correctly either way).




9.2. Atomic intrinsics

The virtual machine provides a number of intrinsics to do various atomic
operations on word-size values (i.e. int and uint). Most basic
arithmetic and logic operations are supported, simple loads and stores, as
well as the CAS (compare-and-swap) operation.

The reason for not supporting fixed-size integer types is that implementing
atomic operations for these across all supported architectures is hard, and
may in some cases result in very inefficient code.

These intrinsics guarantee full sequencing (acquire/release semantics) on all
supported architectures.




9.3. Threading

In general, the virtual machine relies heavily on the D runtime for its
threading infrastructure. This is because the D runtime provides machinery to
suspend and resume all threads for garbage collection runs (only relevant for
stop-the-world GCs), and also provides a cross-platform TLS (thread-local
storage) mechanism.

All threads that somehow execute managed code (be it via the interpreter by
executing JIT-emitted code, or by calling through a trampoline) must
therefore be attached to the runtime. There are some other subtle details
like running D module TLS constructors, attaching to the current garbage
collector, and invoking managed thread entry points as well.

All trampolines generated by the virtual machine (via the tramp
instruction) contain code to do all of the above. However, if threads jump
directly into JIT-emitted code (this should by all means be avoided), they
will have to do the attachment sequence manually before entering the managed
code area.

All threads created through the intrinsic threading API are implicitly
registered with the D runtime, hooked up to the garbage collector, etc. For
such threads, this entire section can be ignored.


9.3.1. Termination

It is worth noting that once the entry point function in the program returns,
the virtual machine will wait for all intrinsic threads that aren’t daemon
threads to join. This does not include threads created outside of the virtual
machine. As such, it is the programmer’s responsibility to ensure that threads
outside of the virtual machine do not call into managed code once the entry
point function has returned and the virtual machine has been shut down.

Intrinsic daemon threads will be forcefully terminated by the virtual machine.
It is important that such threads can cope with this, and that they do not
rely on any termination code to run.
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10. Garbage collection

This page details the standardized garbage collection infrastructure that the
MCI provides to all programs running under the virtual machine.


10.1. Memory layout

All managed objects follow well-defined rules for physical layout of their
contents.

All objects start with an object header. After the header comes the contents
of the object. If the object is an array, the first thing after the header
will be the size field, which is exactly one machine word long. After that
comes whatever padding is needed to align elements to the native SIMD
boundary. Following the padding are elements of the array, laid out
contiguously. For vectors, the layout is exactly the same, except for the
lack of a size field since the size is statically known (in other words, the
padding space will likely be larger for vectors on some platforms). For plain
structure objects, the fields follow immediately after the header.


10.1.1. Object headers

All managed objects contain a header that is exactly three machine words long.
This header contains type information, garbage collector bits, and the field
for user header data.

The specific layout is as follows:







	Offset (32-bit/64-bit)
	Description




	0/0
	Contains the type information pointer.


	4/8
	Contains garbage collection bits (meaning specific to GC implementation).


	8/16
	Contains the user data reference.





The type information pointer points to a structure that has a pointer to the
actual Type object, a cached size, and a computed reference layout bitmap.

Generally, the raw header is not accessible to managed code at all. Reliance
on the layout described here should be avoided except when consuming managed
objects in native code.




10.1.2. Reference bitmaps

Most of the GC implementations use so-called reference layout bitmaps. These
are very compact descriptions of where in a managed object references might be
located. This information is useful to facilitate precise heap scanning.

Consider a type like this:

type Foo
{
    field Bar& bar;
    field int32 i;
    field float64 f;
    field Baz[] baz;
}





From this definition, it is clear that we do not need to scan the memory area
consisting of i and f since they will never hold managed references.
We encode this information in a bitmap where each bit represents a word of the
type’s memory layout. A 1 indicates that the word may hold a managed reference
if non-null, while 0 indicates that it is just plain data.

The bitmap for Foo as defined above would be, on a 32-bit system:

00110001





On a 64-bit system:

0011001





The first three bits are always 001 because they represent the object header
as described earlier. In the header, only the third field may hold a managed
reference. After the header comes the bar field which is clearly managed.
Next, we have two fields of plain data. Here is where the bitmap will differ
depending on bitness; on a 32-bit system, there will be three words between
bar and baz - one for i and two for f, while on a 64-bit
system, there will only be two words - one for i and one for f. Due
to alignment, an extra 4 bytes are added after i. Lastly, we have baz
which is also clearly a managed reference.

The bitmap scheme works well regardless of the specific alignment imposed on
a type by the programmer because references are required to always sit on word
boundaries for correctness.

Note that the bitmap scheme is not currently used for arrays and vectors. In
practice, this only matters for conservative GCs (they may pick up false
pointers in arrays and vectors).






10.2. Reachability

An object is considered garbage when it is no longer reachable, directly or
indirectly, from any GC roots (this includes stacks and registers). In the
heap (that is, inside allocated objects), only direct pointers to other
objects are considered. In roots, interior pointers are allowed (this is to
facilitate passing object fields by reference).

Note that some garbage collectors may support interior pointers in the heap.
However, this is a special case and is not a guaranteed feature of garbage
collectors. It typically requires the collector to be completely conservative,
which is highly undesirable.


10.2.1. Roots and ranges

Roots are single-word slots where the GC starts its scanning. A range is
simply a contiguous sequence of such slots. Conceptually, all thread stacks
are root ranges while global and TLS fields and machine registers are root
slots. Root slots are required to be exactly one machine word because that’s
the size of a managed reference.

In addition to global and TLS fields, machine registers, and thread stacks,
internal objects managed by the virtual machine may also be registered as
roots.




10.2.2. Type precision

Since the MCI’s type system is designed to fully support type-precise garbage
collection, most GC implementations use some kind of type information to
precisely identify managed references (typically bitmaps). This means that,
for example, an integer cannot appear to be a valid managed reference and thus
keep a managed object alive even though it is actually garbage.

Only the heap is scanned precisely in most GCs; roots and stacks are still
scanned conservatively in all GCs. This may change in the future if we decide
to compute precise stack maps, but this doesn’t appear to be worth the effort
and time/space cost currently.




10.2.3. Weak references

There is support for weak references in all garbage collectors the MCI
provides. They are manipulated through the create_weak,
get_weak_target, and set_weak_target intrinsics and are based on the
Weak intrinsic type which is given special treatment by the virtual
machine. The object a weak reference points to can be collected if there are
no direct references to it other than through weak references. This can be
useful for caching mechanisms in particular.

It is not actually guaranteed whether the target of a weak reference will be
collected at all. Some garbage collectors may choose to treat weak references
as strong references if absolutely necessary.






10.3. Compaction and copying

Garbage collectors may use so-called moving collection techniques. There are
generally two forms of these: Compacting and copying. Both attempt to reduce
heap fragmentation. Compaction does so by moving live objects while doing a
collection. Copying uses two semispaces of equal size where live objects are
copied to/from on each collection (this halves the heap space, but requires
less passes over the heap than compaction).

The possible presence of these algorithms means that code must not assume that
objects are fixed at a certain location in memory. The MCI’s type system and
ISA both try to enforce this by design (there are ways around this, but doing
so is not supported in any way).


10.3.1. Pinning

The fact that objects may move arbitrarily means that native code can have
trouble working with them. Since the MCI has no knowledge of external native
code, it cannot correctly update references. The solution to this problem is
called pinning: A pinned object cannot be collected. The MCI provides the
mem.pin and mem.unpin instructions to do this.

Pinning of objects passed to ffi calls is required for correct results.
This isn’t statically verified, however, so undefined behavior can occur if
pinning is not done (usually, this just results in bad memory accesses in the
native code).

Practically, any object reachable directly from a root is pinned. However,
this is not at all guaranteed, so pinning is still required for correct code.

It’s important that objects be unpinned once pinning is no longer required. If
an object is never unpinned, it will never be collected (until application
shutdown).






10.4. Finalization

It is possible to register finalizers for all managed objects (including
arrays and vectors). The gc_set_free_callback intrinsic registers a
callback for a specific object. This callback will be called when the object
is no longer reachable from any live object regardless of cycles (i.e. the
finalizable object is reachable directly or indirectly from itself). Passing a
null callback to gc_add_free_callback will remove any callback registered
for the given object. Note that a callback is automatically removed before it
is run.

No particular order of finalization is guaranteed. Callbacks should be
programmed to not rely on order at all. Additionally, it is not guaranteed
what thread a finalizer will run on, but it is guaranteed that the world will
be resumed by the time a finalizer callback runs.

The gc_wait_for_free_callbacks intrinsic will block the calling thread
until all queued finalization callbacks have been called. It can be useful
if one needs to wait for a particular set of objects’ finalization callbacks
to run before continuing execution. Generally, this is achieved by letting
those objects become garbage, calling gc_collect, and finally calling
gc_wait_for_free_callbacks.




10.5. Barriers

Garbage collectors may require the use of read/write barriers. Contrary to
what this terminology may suggest, barriers don’t necessarily have anything to
do with concurrency. They can be used for a wide array of things, and the
specific purpose depends entirely on the GC implementation.

Barriers come in three flavors: Field reads/writes, array loads/stores, and
indirect memory loads/stores. All of these barrier types are only called when
managed types are involved. They are also only inserted into generated code
if the GC specifically asks for them to be inserted, so there is no speed cost
if a GC does not use barriers.




10.6. Garbage collectors

This section lists the current GC implementations available in the MCI.


10.6.1. D runtime garbage collector


	GC name

	dgc

	Type precision

	Conservative

	Supports interior pointers

	Yes

	Supports finalization

	No

	Is generational

	No

	Is incremental

	No

	Is moving

	No

	Uses barriers

	No



This GC uses the D runtime library’s built-in garbage collector. It is
entirely conservative and makes no use of type information. It has no support
for finalization due to limitations in D’s runtime library.

This GC is reasonably fast, but is geared towards native languages running in
an uncooperative environment, and therefore doesn’t make use of any of the
information available for free in the MCI.

This GC supports interior pointers in the heap.

This is a stop-the-world collector with no support for parallel/concurrent GC.




10.6.2. Boehm-Demers-Weiser garbage collector


	GC name

	boehm

	Type precision

	Partially conservative

	Supports interior pointers

	Partially

	Supports finalization

	Yes

	Is generational

	Optionally

	Is incremental

	Optionally

	Is moving

	No

	Uses barriers

	No



This GC uses the Boehm-Demers-Weiser garbage collector (libgc). It has partial
support for precise scanning using type bitmaps (only for structure types).

This GC supports interior pointers in the heap. However, in structure types
(which use type bitmaps), they are only picked up when assigned to fields that
are considered GC-managed (i.e. fields of reference, array, or vector types).

This GC is highly tuned through more than two centuries of development. It
supports parallel marking and incremental collection.

This is a stop-the-world collector with no support for concurrent GC.

Note that this GC is not available on Windows. Also note that the MCI assumes
that it is the only user of libgc in the process it’s running in, so it will
liberally set certain options without regarding any values they may have been
set to previously (and also assumes those options won’t be changed).




10.6.3. LibC garbage collector


	GC name

	libc

	Type precision

	N/A

	Supports finalization

	Yes

	Is generational

	No

	Is incremental

	No

	Is moving

	No

	Uses barriers

	No



This GC performs no actual collection; it is equivalent to a null GC. It
supports plain allocations and deallocations, and supports finalization (which
is only triggered on explicit deallocation).
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